https://getcryptotab.com/1034194

Monday, February 5, 2018

The concept of Meson Particle



The concept of Meson Particle
In particle physics, mesons are hadronic subatomic particles composed of one quark and one antiquark, bound together by the strong interaction. Because mesons are composed of quark sub-particles, they have a physical size, with a diameter of roughly one femtometer, which is about 1.2 times the size of a proton or neutron. All mesons are unstable, with the longest-lived lasting for only a few hundredths of a microsecond. Charged mesons decay (sometimes through mediating particles) to form electrons and neutrinos. Uncharged mesons may decay to photons. Both of these decays imply that color is no longer a property of the byproducts. Outside the nucleus, mesons appear in nature only as short-lived products of very high-energy collisions between particles made of quarks, such as cosmic rays (high-energy protons and neutrons) and ordinary matter. Mesons are also frequently produced artificially in high-energy particle accelerators in the collisions of protons, anti-protons, or other particles.
Mesons are the associated quantum-field particles that transmit the nuclear force between hadrons that pull those together into a nucleus. Their effect is analogous to photons that are the force carriers that transmit the electromagnetic force of attraction between oppositely charged protons and electrons that allow individual atoms to exist, and further, to pull atoms together into molecules. Higher energy (more massive) mesons were created momentarily in the Big Bang, but are not thought to play a role in nature today. However, such heavy mesons are regularly created in particle accelerator experiments, in order to understand the nature of the heavier types of quark that compose the heavier mesons.
Mesons are part of the hadron particle family, and are defined simply as particles composed of two quarks. The other members of the hadron family are the baryons: subatomic particles composed of three quarks. Some experiments show evidence of exotic mesons, which do not have the conventional valence quark content of one quark and one antiquark.
Because quarks have a spin of ​1⁄2, the difference in quark-number between mesons and baryons results in conventional two-quark mesons being bosons, whereas baryons are fermions.
Each type of meson has a corresponding antiparticle (anti-meson) in which quarks are replaced by their corresponding anti-quarks and vice versa. π+) is made of one up quark and one down antiquark; and its corresponding antiparticle, the negative ion (π−), is made of one up antiquark and one down quark.
Because mesons are composed of quarks, they participate in both the weak and strong interactions. Mesons with net electric charge also participate in the electromagnetic interaction. Mesons are classified according to their quark content, total angular momentum, parity and various other properties, such as C-parity and G-parity. Although no meson is stable, those of lower mass are nonetheless more stable than the more massive, and hence are easier to observe and study in particle accelerators or in cosmic ray experiments. Mesons are also typically less massive than baryons, meaning that they are more easily produced in experiments, and thus exhibit certain higher-energy phenomena more readily than do baryons.

Magnetic Force Formula (Charge-Velocity)
When a charged particle moves in a magnetic field, a force is exerted on the moving charged particle. The formula for the force depends on the charge of the particle, and the cross product of the particle's velocity and the magnetic field. The direction of the force vector can be found by calculating the cross product if vector directions are given, or by using the "right hand rule". Imagine your right hand with your index finger pointed in the direction of the particle's velocity vector. Then, curl your fingers in the direction of the magnetic field vector. The direction of your thumb is the direction of the cross product of the vectors. If the charge is positive, the direction of the force will be in the direction of your thumb. If the charge is negative, the direction of the force will be the opposite. The unit of force is Newtons (N), the unit of charge is Coulombs (C), the unit of velocity is meters per second (m/s), and the unit of magnetic field is Tesla s (T).

No comments:

Post a Comment

Raja Ram Mohan Roy

There is no denying the fact that Raja Ram Mohan Roy had had the recognition as the 'Maker of Modern India'. He was the founder ...